The tail that wags the dog: the globular tail domain defines the function of myosin V/XI.

نویسندگان

  • Jian-Feng Li
  • Andreas Nebenführ
چکیده

Actin-based organelle movements are driven by the related multifunctional myosin motors of class V in animals and fungi and class XI in plants. The versatility of these motors depends critically on their C-terminal globular tail domain that allows them to bind to a broad variety of cargo molecules. Regulation of this motor-cargo attachment is frequently employed to modulate organelle movement. While the overall structure of the cargo-binding globular tail appears to be conserved between myosin V and XI, it has become apparent that the motor-cargo interactions differ widely even within a single organism and involve protein complexes with different architecture and completely unrelated protein domains. At the same time, indirect evidence suggests that adaptor or receptor dimerization could facilitate efficient myosin capture. Comparison of myosin V and XI across the large evolutionary distance between animals and plants will likely reveal more fundamental insights into these important motors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of chara Myosin globular tail domain to phospholipid vesicles.

Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding o...

متن کامل

Identifying Myosin Class XI Globular Tail Interactions With Plant Organelle Proteins

Cytoplasmic streaming, rapid movement of cytosol and organelles moving throughout the plant cell, raises questions such as how/why these organelles are being moved and how much this affects plant growth. It is believed that the organelles are being moved via different myosin proteins by attaching to their globular tail via ATP hydrolysis. Therefore, this project aimed to explore myosin globular...

متن کامل

Myosin V attachment to cargo requires the tight association of two functional subdomains

The myosin V carboxyl-terminal globular tail domain is essential for the attachment of myosin V to all known cargoes. Previously, the globular tail was viewed as a single, functional entity. Here, we show that the globular tail of the yeast myosin Va homologue, Myo2p, contains two structural subdomains that have distinct functions, namely, vacuole-specific and secretory vesicle-specific movemen...

متن کامل

Structural basis for myosin V discrimination between distinct cargoes.

Myosin V molecular motors move cargoes on actin filaments. A myosin V may move multiple cargoes to distinct places at different times. The cargoes attach to the globular tail of myosin V via cargo-specific receptors. Here we report the crystal structure at 2.2 A of the myosin V globular tail. The overall tertiary structure has not been previously observed. There are several patches of highly co...

متن کامل

Two Distinct Regions in a Yeast Myosin-V Tail Domain Are Required for the Movement of Different Cargoes

The Saccharomyces cerevisiae myosin-V, Myo2p, is essential for polarized growth, most likely through transport of secretory vesicles to the developing bud. Myo2p is also required for vacuole movement, a process not essential for growth. The globular region of the myosin-V COOH-terminal tail domain is proposed to bind cargo. Through random mutagenesis of this globular tail, we isolated six new s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Traffic

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2008